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Abstract
Negative values of Yule-Nielsenís parameter n in empirical fits

have occasionally arisen. This paper examines two probable causes,
ink spread and non-transparency of the ink. Three new models for
single-ink halftone spectra are derived and exercised. It was neces-
sary for the two factors to combine to consistently result in negative
n in empirical fits to simulated spectra.

Introduction
While performing model-based characterization of color

halftone devices, solutions with negative Yule-Nielsen n oc-
casionally arise. The purpose of this paper is to examine
two causes for this phenomenon beyond the diffusion of light
within the substrate. In order to do this, three new models of
halftone behavior will be derived and exercised. In this sec-
tion, a few of the existing models shall be examined as an in-
troduction.

The Yule-Nielsen Model
In a seminal 1951 paper, Yule and Nielsen [1] describe a

model which relates the reflectance of a halftone print, βt , the
reflectance of the solid ink, βs, and the area fraction of the
halftone pattern, f . If we also account for the reflectance of
the unprinted substrate, βg (in 1951 it was customary to null
the reflectometer on the unprinted substrate so all reflectances
would be relative to its reflectance), we obtain:

βt =
[
(1 − f ) · β1/n

g + f · β1/n
s

]n
(1)

where n is a parameter which semi-empirically accounts for
the diffusion of light within the substrate. Viggiano, af-
ter demonstrating mathematically why the model performed
poorly with integrated reflectances, extended this to the spec-
tral case, and suggested replacing the 1/n with u. The Yule-
Nielsen-Viggiano model (also termed the VHM-1) may be
written: [2, 3]

βu
tλ = (1 − f ) · βu

gλ + f · βu
sλ (2)

The inverse of Eq (2) is also of interest; it provides f as a
function of βt and the parameters:

f =
(

βu
gλ − βu

tλ

)
/

(
βu

gλ − βu
sλ

)
(3)

When estimating f from the spectra βgλ, βsλ, and βtλ, the
value is usually selected by minimizing weighted reflectance
error, ∆E∗

ab, or a similar criterion, in Eq (2), rather than through
Eq (3). Eq (3) may be applied in narrow spectral bands when
the its denominator is large.

Figure 1. Profiles of dots under different degrees of volume-preserving spread-

ing. Top: hard-edged dot; upper middle: complete ink spread; lower mid-

dle: incomplete ink spread; bottom: incomplete ink spread, approximated with

core/fringe (wedding cake) model. Paper thickness is not to scale.

Physical Significance of n for 1≤n≤2
The Yule-Nielsen model has been derived by Davies (re-

ported by Murray) [4] for n = 1, with no diffusion of light
under the dot, in which case it is referred to as the Murray-
Davies model, and by Yule and Nielsen for n = 2, which corre-
sponds to complete diffusion with transparent inks. Ruckde-
schel and Hauser [5] examined incomplete diffusion (assum-
ing transparent inks and ), and found that the parameter n was
bounded between 1 and 2. Pearson [6] found that an n = 1.7
minimized density error for several cases he considered, and
recommended that it be used in the absence of more specific
information.

n > 2 in praxis
Pope [7] examined additional cases, and determined n

for each by equating the f determined using microplanime-
try with the f predicted using Eq (3). Many of the instances
of n determined by Pope were greater than 2. The itera-
tive search used by Pope did not converge for several cases.
These were when the relative (to the substrate) density of the
tint, Dt − Dg = log(βg) − log(βt), was greater than the area
fractional coverage, f , times the relative density of the solid,
Ds − Dg = log(βg) − log(βs).

Pollack’s Limit: n→ ∞
Pollack [8] asserted that the relative density of the tint

will equal the product of the relative density of the solid and
the fractional area in the limit as n → ∞. Pollackís limit is ex-



Model Ink Spread
Light

Diffusion
Scatter
in Ink?

Ink Pene-
tration?

VHM-5 Complete
(doesn’t
matter)

Yes No

VHM-6 None Complete Yes No
VHM-7 Incomplete Complete Yes No

Table 1: Three models and their assumptions.

pressed in terms of reflectances as:

lim
n→∞

[
(1 − f ) · βu

gλ + f · βu
sλ

]n
= β

(1− f )
gλ · β

f
sλ (4)

and, in terms of absolute densities, as:

lim
n→∞

Dtλ = (1 − f ) · Dgλ + f · Dsλ (5)

Eqs (4) and (5) parallel the model of Bouguer, Lambert, [9]
and Beer. [10] If the ink is non-scattering and a layer of unit
thickness on a substrate of reflectance βs has itself reflectance
βs, Eq (4) will give the Bouguer-Lambert-Beer solution for a
layer of thickness f . If a non-scattering ink is applied as a
halftone with a fractional area f at unit thickness is smeared or
spread into a continuous layer atop the substrate of thickness
f , the Bouguer-Lambert-Beer law will apply, as confirmed by
Arney and Yamaguchi. [11]

This is why Pollackís limit is referred to as such: it is
not only a limit in the mathematical sense, but is also a limit
in the physical sense. Halftone patterns printed from a non-
scattering ink (which do not penetrate the substrate if it scat-
ters optically) will have n → ∞. The limit of halftone im-
age production under the conditions mentioned is continuous
tone. For some time, this was thought to be the absolute lim-
iting case, which it is under the set of constraints mentioned
earlier.

Empirical versus Theory-Based n-values
Although the Yule-Nielsen parameter n may assume any

value, values other than 1, 2, and ∞ (values of u other than 1,
1
2 , and 0) may be regarded as empirical tweaks. Ruckdeschel
and Hauser did apply theory to arrive at n ∈ [1,2], but it can
be demonstrated that, as long as the reflectance of the solid is
wavelength dependent, their methodology shall compute dif-
ferent n will for different wavelengths. Based on empirical ob-
servation, Iino and Berns suggested wavelength-dependent n,
[12] but the Ruckdeschel and Hauser methodology was not
able to predict the dependency they arrived at empirically.
This is evidence of a problem with the theory. In light of both
this and the rather aggressive assumptions made in its deriva-
tion, it was decided to examine some of these assumptions and
the effects of relaxing them.

Three Models of Halftone Spectra
The assumptions needed for the Yule-Nielsen model are

rather aggressive. In the three models which follow, some
of the assumptions shall be relaxed. All three models admit
scatter within the ink layer, which shall be modeled using
Kubelka-Munk [13] and a simplification of it by Tollenaar and
Ernst. [14] The second assumption to be relaxed (in two of the

three cases) is that of hard-edged or sharp halftone dots in the
final print. We shall model ink spread, a smearing of the ink
at or after its transfer to the substrate, as a volume-preserving
transformation. (This is distinct from dot gain, which in which
ink volume is not preserved; it is usually increased.) Different
degrees of ink spread are illustrated in Figure 1.

The models which follow continue to assume that the ink
does not penetrate any portion of the substrate which exhibits
significant scatter of light. Further, the second and third as-
sume that the mean diffusion distance of light within the sub-
strate is significantly larger than the pitch of the halftone pat-
tern.

VHM-5: Complete Ink Spread, Non-Transparent Ink
In this case we consider complete ink spread. The models

of Kubelka and Munk or Tollenaar and Ernst may be used to
account for ink scatter. We shall first consider the latter. The
Tollenaar-Ernst model was derived for the optical density of a
continuous ink layer of thickness Z:

Dλ = Dgλ +
(
D∞λ − Dgλ

)(
1 − e−mλ·Z

)
(6)

Under Tollenaar-Ernst, what may be termed the parametric
thickness of the solid may be written:

Zs · mλ = ln
(
D∞λ − Dgλ

)
− ln (D∞λ − Dsλ) (7)

The parametric thickness of the ìtintî after ink spreading
will be f times the parametric thickness of the solid, and may
be substituted into the Tollenaar-Ernst forward model to ob-
tain the density of the tint:

Dtλ = D∞λ −
(
D∞λ − Dgλ

)1− f
(D∞λ − Dsλ) f (8)

This model is the single-ink VHM-5 with the Tollenaar-Ernst
simplification. We may also write the single ink VHM-5 under
Kubelka-Munk:

βtλ =
1 − βgλ [aλ − bλ · coth( f · bλ · Sλ · Zs)]
aλ − βgλ + bλ · coth( f · bλ · Sλ · Zs)

(9)

where the Kubelka-Munk parametric thickness of the solid is
bλ · Sλ · Zs, and may be determined from the spectra of the
solid and substrate and the a and b spectra: 1

bλ · Sλ · Zs = tanh−1 aλ − βsλ

bλ
− tanh−1 aλ − βgλ

bλ
(10)

VHM-6: Non-Transparent Ink, No Ink Spread
Consider once again hard-edged dots (as appear in the

top of Figure 1), the same type which are assumed by Yule
and Nielsen. In this section, the effect of optical scatter in
the ink layer shall be accounted for. A refined version of the
Clapper-Yule model [15] is offered here. (Clapper and Yuleís
motivation for internal reflection was the discontinuity in re-
fractive index at the top of the print; their work assumes trans-
parent inks.) An initial fraction f · β0λ of the incident flux
will be reflected immediately because of the opacity of the

1Corrected version of Kubelkaís Eq (25)



ink; βgλ[1 − f · (1 − Tλ)]2 will exit the substrate after one pass
through the dot; β2

gλ · β0λ · f · [1 − f · (1 − Tλ)]2 will exit after
two passes through the dot, and so on, in an infinite geometric
series. The ratio between two successive terms in this geomet-
ric series is f · βgλ · β0λ , and, after adding the initial reflection
which is not part of this series, we obtain:

βtλ = f · β0λ +
βgλ [1− f · (1− Tλ)]2

1 − f · βgλ · β0λ
(11)

which is the single-ink version of the VHM-6. Worthy of men-
tion is that for unprinted paper, i.e., when f = 0, Eq (11) re-
duces to βtλ = βgλ , while for the solid ink, i.e., f = 1, Eq (11)
becomes:

βtλ( f=1) = β0λ +
βgλT 2

λ

1 − βgλ · β0λ
(12)

which is identical to Kubelkaís Eq (37). [13] It is asserted that
this model is rigorous under the Kubelka-Munk assumptions.

If the saturation reflectance spectrum of the ink, β∞λ, is
known, together with the spectra of the substrate and the solid
ink, the spectra Tλ and β0λmay be computed through inver-
sion of Eq (12) and Kubelkaís Eq (32).

Eq (11) is a generalization of the VHM-1 for complete dif-
fusion: For transparent inks, β0λ = 0, while Tλ = (βsλ/βgλ)1/2.
Substituting these into Eq (11) yields:

βtλ, transparent = βgλ

{
1 − f ·

[
1 − (βsλ/βgλ)1/2

]}2
(13)

which, after a little algebra, yields Eq (2) with n = 2.

VHM-7: Incomplete Ink Spread, Scattering Ink
The previous cases considered have all addressed ex-

tremes of either ink spread or ink transparency or both. More
realistic is the case of incomplete ink spread, and an optically
scattering ink. This case will be addressed in this section.

We continue to assume no penetration of ink into the sub-
strate, and complete diffusion of light within the substrate.
While some have admirably employed continuously variable
ink layer thickness, [16, for example] we employ the ìCore-
Fringeî method of Azuma, et al. [17] This model of ink spread
is illustrated in the bottom subfigure of Figure 1. The frac-
tional coverage f is replaced with two fractional coverages,
fc and f f , for core (higher density) and fringe (lower density)
regions, respectively.

We impose the somewhat arbitrary constraint that the
thickness of the ink layer in the fringe is half that in the
core which in turn is identical to that of the solid. The vol-
ume preservation constraint then implies that fc + 1

2 f f = f .
If the Kubelka-Munk spectra of the ink are known, the spec-
tra β0 f λ (reflectance of fringe over perfect black backing) and
Tf λ (transmittance of fringe) may be computed. An infinite
geometric series, similar to the one in the previous section, is
constructed. After adding the initial reflections caused by ink
opacity it resolves to:

βtλ = f f · β0 f λ + fc · βocλ

+
βgλ

[
1 − f f · (1− Tf λ) − fc · (1− Tcλ)

]2

1 − βgλ

(
f f · β0 f λ + fc · β0cλ

) (14)

This model is the VHM-7 for a single ink. Because in this paper
we have set the layer thickness of the core to that of the solid,
we set βocλ = βoλ and Tcλ = Tλ. When fc = f f = 0, Eq (14)
reduces to βtλ = βgλ , which is expected when there is no ink.
Further, when f f = 1, fc = 0, Eq (14) reduces to:

βtλ( f f =1) = β0 f λ +
βgλT2

f λ

1 − βgλ · β0 f λ

which is a Kubelka-Munk expression for the reflectance spec-
trum of the fringe. Finally, when f f = 0, fc = 1, we have anal-
ogously:

βtλ( fc=1) = β0cλ +
βgλT 2

cλ

1 − βgλ · β0cλ

which is a Kubelka-Munk formula for the reflectance spec-
trum of the dot core. It is asserted that this model is also con-
sistent with the Kubelka-Munk assumptions.

Clearly, the VHM-7 is a generalization of the VHM-6, for
if we substitute f f = 0 and fc = f into Eq (14), it reduces to Eq
(11).

Investigation of Causes of Negative n
We now turn to the question of whether either of these

effects, ink spread or non-transparency of the ink, can result
in a negative n to be fit by an empirical optimizer.

We have already seen that, for transparent inks, the limit
of n is infinity; negative n cannot be produced by transpar-
ent inks which lie completely atop the substrate, and only
when the ink spread completely. A first approach to this ques-
tion is whether non-transparent inks which exhibit complete
spread can cause an empirical optimizer to arrive at negative
n. Halftone spectra which satisfy this may be simulated using
the VHM-5.

The D∞λ spectrum of a set of typical process inks were
computed from their Kubelka-Munk K and S spectra, as were
solid ink spectra βsλ. (The solid ink spectra were computed
using ink layer thicknesses of 1 to 1.2 micrometers, which are
typical of those used in lithographic printing.) These were
substituted into Eq (8) to compute the spectra of individual ink
tints for f = 0.1, 0.2, . . . , 0.9. An empirical fit of n was then per-
formed. All fitted n were negative; those for Cyan were small-
est (ranging from -4.19 to -3.36); those for Magenta were in-
termediate (-2.89 to -1.89); while those for Yellow were largest
(-0.66 to −0.29). This is consistent with the Cyan ink being the
closest to transparent (highest masstone density) and Yellow
least transparent (lowest masstone density), with Magenta in
between.

Having established that complete spreading of an opti-
cally scattering ink layer can cause negative n, we isolate the
two effects. The VHM-6 admits scattering in the ink, but no
spread. The Tλ and β0λ spectra were computed for each ink,
and single-ink tonescale spectra were simulated for the same
fractional coverages as before. Here, the results were quite
different. Only Yellow tints exhibited negative n, and only for
some of the tone scale. The fitted n for the Cyan tints were
essentially equal to 2; those for the Magenta tints ranged from



Halftone Model Linear Mixing Space

Murray-Davies βλ

Yule-Nielsen βu
λ

Pollack’s Limit Dλ = − log βλ

VHM-5, using Tollenaar-Ernst ln (D∞λ − Dλ)
VHM-5, using Kubelka-Munk tanh−1 aλ−βλ

bλ

Table 2: Some halftone models and their Linear Color Mixing
Spaces.

2.11 to 2.36. Thus, it is concluded that scatter in the ink alone
may produce negative n, but only for intensely scattering inks.

Finally, both transparency and ink spread are considered
in conjunction with complete diffusion of light within the pa-
per, using the VHM-7 to simulate the spectra. In order to do
this, the relationship between f , fc, and f f needed to be stipu-
lated. Somewhat arbitrarily, we used the relationship:

f f = 1.6 · f · (1 − f ) (15)

Combining this with the ink volume preservation constraint
fc + 1

2 f f = f , yields the expression for the core area fraction:

fc = f − 0.8 · f · (1− f ) (16)

This model was selected for a number of different reasons, in-
cluding its ability to produce core, fringe, and uninked area
fractions on the closed interval [0, 1] for all f on this same in-
terval. It does tend to produce a significant fringe area frac-
tion which is maximized at f = 1

2 ; at this point, f f = 0.8 and
fc = 0.1.

The empirically-fit values of n using this model were 3.50
to 3.53 for Cyan, 3.84 to 4.68 for Magenta, and -3.65 to -0.55 for
Yellow. As before, only the most scattering ink produced the
negative n.

Linear Color Mixing Spaces
In most of the models considered in this paper, halftone

behavior can be linearly modeled in some transformation of
reflectance. For example, the Yule-Nielsen-Viggiano model
given in Eq (2) is linear in βu

λ, while the Pollack limit is linear
in optical density. No linear color mixing space has yet been
found for the VHM-6 or VHM-7. Linear color mixing spaces
for the other models are listed in Table 2.

Conclusions
In this paper, we have re-examined the key assumptions

made in some popular halftone models, derived two new
models in which the assumptions of ink transparency and
non-spreading inks have been relaxed, introduced the con-
cepts of parametric thickness and linear color mixing spaces,
and illustrated how scattering within the ink layer and ink
spread can combine to cause an empirical determination of
Yule-Nielsen parameter n to assume a negative value.

Future Work
Future work shall include extension of the VHM-5 and

VHM-6 models to multi-ink, derivation of models which ad-
mit penetration of the ink into the substrate, and models for

incomplete diffusion of light within the substrate. A system-
atic examination of 36 combinations of these factors is under-
way.
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Abstract 
In color image printing, the halftone image must be 

processed. This process is called image screening. Avoiding Morie 
strip is the one of the cores of screening technique. Nowadays, 
there are two ways to avoid Morie strip. One is the FM screening; 
the other is AM screening in which avoiding Morie strip is by 
changing the screening angle. This paper brings forward a new 
image screening method of avoiding Morie strip, FCAM screening 
(Frequency conversion amplitude modulation) which is different 
above-mentioned two methods. It also researches on the 
phenomena and theorems of producing and avoiding Morie strip in 
FCAM screening, and draws the elementary conclusions. 

Preface 
The screen dot is the basis of composing printing image and 

the basic cell of expressing the color image tone. It transfers the 
tone of image. In the duplication of color continuous original, 
transferring the color and tone of original to the printed matter as 
verily as possible is the core of success of image duplication. After 
long researches and practices of human being, the modern color 
image duplication technology which adopts screen dot to print 
forms. The tradition screening method was invented 100 years ago, 
the digital screening theory began to form. Because the image 
outputting must be processed by screening, the screening technique 
is still the core issue of electronic publishing and image 
duplication in computer era. 

Avoiding Morie strip is always the technical kernel issue in 
digital screening. In order to avoid Morie strip, we can research on 
following two aspects: � approximating the traditional screen angle 
by digital screening. In the four-color printing based on AM 
screening technique, the Morie strip is relative with the screen 
angle. The traditional screening angles, namely, 0º ,15º ,45º and 
75º are the optimal angles and can avoiding the Morie strip. In the 
digital screening, if these angles can be realized, the influence of 
Morie strip to the printed matter can be also solved effectively; 
�Adopting new screening method. In the traditional screening 
method, the screen dot size varies but its position and space are 
fixed that are the essential causes of producing Morie strip. When 
the dot size is fixed and its position is uniformly distributed 
randomly, then the problem of Morie strip can be solved. This is 
the FM screening technique in modern screening techniques. In the 
principle of FM screening technique, any angle combinations can 
not produce Morie strip. So it provides the possibility of super 
four-color high-fidelity printing 

Summarizing the methods and principles of avoiding Morie 
strip in image screening, we can deduce following two Theorems: 

Theorem 1: using AM screening technique, when the dot 
images with the same screen line number are overprinted, by 
adjusting the overprinting angles between the dot images, the four-

color overprinting can be realized and can avoid the Morie strip. 
The quality of the print matter can be also acceptable. 

Theorem 2: the FM screening technique can make the dot of 
screening image show irregular arrangement. Using this technique, 
when the different dot images are overprinted with random angles, 
it can’t produce Morie strip. So the super four-color high-fidelity 
printing can be realized. 

According the theorem 1, the current AM screening technique 
can realize four-color printing and its process is mature and stable. 
Because of the limitation of screen angle, the super four-color 
high-fidelity printing can’t be realized. According the theorem 2, 
the FM screening technique can avoid producing the Morie strip 
and is not restricted by the screen angle. But the dot enlargement is 
not easy to be controlled and the demand of technology condition 
is very high, so its practical application is very difficult. So we 
should find a new screening method which not only can use the 
simple technology of AM screening, but also can realize the super 
four-color high-fidelity printing. So the essence of the problem is 
to find a new method which can avoid the Morie strip except the 
theorem 1 and 2. 

After the long research on the image screening technique, the 
authors find the third method which can avoid the Morie strip, 
namely, FCAM (frequency conversion amplitude modulation) 
screening and summarize several rules of this method. It can avoid 
the Morie strip to a certain extent and solves the problem of super 
four-color high-fidelity printing. 

Basic Thought 
To different halftone images, we can adopt the AM screening 

technique and alter the screen line number to avoid the Morie strip 
within a little scale of overprint angle. This method can realize 
overprinting the halftone image without producing the Morie strip. 
It provides new technical choice for the super four-color high-
fidelity printing. 

The new method does not apply the random screening 
technique. To every halftone image, it still applies the mature AM 
screening algorithm. So its practical technology is not difficult. 
The extents of avoiding the Morie strip vary with the differences 
between the screen line numbers of halftone images. Within a 
certain extent, the larger the differences between the screening 
lines are, the better the effects of avoiding the Morie strip are. In 
practice, under the precondition of gaining satisfactory quality of 
duplication, the extent of screen line numbers is limited. 
Generally, the screeni line number is between 100 lpi and 300 lpi. 

Because this method is based on the AM screening and alters 
the screen line numbers of AM screening among different 
screening images, this paper calls the new method FCAM 
screening temporarily. It provides more choices for the halftone 
image process and color image printing. 



 

 

Experimental Research 
Experiment 0: first we observe the Morie strips produced 

when two halftone images with same screen line number are 
overprinted in different angles. The screen line number is 175 lpi. 
When the screen angle is 0º, the Morie strip is very obvious. As 
the screen angle increases, the Morie strip dies down. When the 
screen angle is 45º, the Morie strip is up to the minimum. When 
the screen angle becomes more, the Morie strip will reverse. The 
curve between the Mories strips and the screen angles is as 
following curve O in figure 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
P is the space of Morie strip and � is the overlap angle 

between the two halftone images. The curve O expresses the basic 
phenomena and rules of the Morie strip of the AM screening with 
the same screen line number. 

When two screens are overlapped and one screening line 
number is changed, the experimental result will be as follows: 

Experiment 1: we use two screens, one is 175LPI; the other is 
150lpi. So the difference of screen line number is 25lpi. When the 
overlap angle is within 0º-45º, the strength of Morie strip is curve 
A-1 in figure 1. 

Experiment 2: we use two screens, one is 175LPI; the other is 
133lpi. So the difference of screen line number is 42lpi. When the 
overlap angle is within 0º-45º, the strength of Morie strip is curve 
A-2 in figure 1. 

Experiment 3: we use two screens, one is 175LPI; the other is 
120lpi. So the difference of screen line number is 55lpi. When the 
overlap angle is within 0º-45º, the strength of Morie strip is curve 
A-3 in figure 1. 

Experiment 4: we use two screens, one is 175LPI; the other is 
100lpi. So the difference of screen line number is 75lpi. When the 

overlap angle is within 0º-45º, the strength of Morie strip is curve 
A-4 in figure 1. 

Analysis and Discuss of the Experimental 
Result 

Applying FCAM screening technique, when two halftone 
images are overprinted, the rules of Morie strip are as following: 

(1) Applying FCAM screening technique, when the overlap 
angle of two screens approximates to angle 0º, the Morie strip is 
convergent. This is different with the same screen line number 
screening. When two screens with the same screen line number are 
overlapped, from angle 0º to a certain small angle, the Morie strip 
is from infinite to immense. The process changes rapidly. But 
applying FCAM screening technique, when two screens are 
overlapped, the Morie strip is stable near the screen angle 0º. As 
the angle increases, the Morie strip changes slowly and has a fixed 
initial value which we call W0. If the screening frequency and the 
difference of screening frequency are different, the W0 is also 
different. 

(2) When the screening frequency of one screen is fixed, 
within a certain range, the larger the difference between the fixed 
frequency and the variable frequency is, the smaller the Morie strip 
is. When the difference of screen frequency is up to a certain 
value, the W0 is up to the minimum. Then the Morie strip is 
invisible, so it can be avoided. 

(3)The frequency difference which makes the W0 minimum 
varies with the screen line numbers of two screens. 

Form the experiment we can see that when the screen line 
number of fixed screen increases, the screening frequency 
difference which makes the Morie strip invisible also increases. 
The table 1 summarizes the relative experimental data. From it, we 
can see the change trend. 

Table 1: The relationship between the fixed screening frequency 
and screening frequency difference 

From the experimental result we can draw following 
conclusions: 

Supposing the fixed screen is P1 whose screen line number is 
n1 , when the screen line number of variable screen P2 decreases to 
n2 ,namely, the difference of two screening line numbers is S1(n1- 
n2= S1),  the Morie strip is up to the minimum. When the n1 is 
fixed, the screen line number of variable screen P2 is up to n3, 
namely, the difference of two screening line number is S2(n3- n1= 
S2), the Morie strip is also up to the minimum. 

The following equation (1)should exist: 

                                                                       (1) 
 
(4) The CFAM screening is different with the same line 

number AM screening. When the Morie strip is up to the 
minimum, the overlap angle is not 45º but between 20ºand 30º. 

(5) Adopting the CFAM screening, when two screens are 
overlapped, the Morie strip is up to the maximum at the overlap 
angle 45º. 

Fixed screening 
frequency (lpi) 

150 175 200 225 

Screening frequency 
difference (lpi) 

50 55 67-80 75-92 

Figure 1: The trend of Morie strip 
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(6) When the screen frequency is up to a special value, the 
Morie strip can be avoided in a certain overlap angle scale or the 
Morie strip can be controlled in a comparatively small scale, such 
as the curve A-4 in the figure 1. 

(7) The strength of Morie strip produced in FCAM screening 
is very weak. Especially, when the screen line number is up to a 
certain value, the strength of Morie strip is very weak at the screen 
angle 0º. 

Conclusions 
The FCAM screening provides a new method to avoid the 

Morie strip in the halftone image screening. It is an innovation of 
image screening technique. According to the research in this paper, 
we can deduce the third theorem of avoiding Morie strip in the 
image screening, namely: 

Apply AM screening technique, the Morie strip can be 
avoided in small range of overlap angle by changing the screen 
line number of overlapped halftone images. When the screen line 
number is up to special value, it can avoid the Morie strip in the 
same overlap angle. 

Combining the theorem 1 and theorem 3, the super four color 
halftone images can be overlapped without producing the Morie 

strip. So the super four-color high-fidelity printing can be realized 
based on the AM screening technique. This is one of important 
application fields of this research. 
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